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The transition to a periodic flow induced by a thin fin on the sidewall of a differentially heated cavity is
numerically investigated. The numerical results are compared with a previously reported experiment. It
is demonstrated that the transient flow obtained numerically shows features consistent with the exper-
imental flow. Based on the present numerical results, the temporal development and spatial structures of
the thermal flow around the fin are described, and the separation of the thermal flow above the fin is dis-
cussed. It is found that the presence of the fin changes the flow regime and results in the transition of the
thermal flow to a periodic flow. The present numerical results also indicate that the unstable temperature
configuration above the fin results in intermittent plumes at the leeward side of the fin, which in turn
induce strong oscillations of the downstream boundary layer flow. It is demonstrated that the oscillations
of the boundary layer flow significantly enhance the heat transfer through the finned sidewall (by up to
23%).

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in a differentially heated cavity is one of the clas-
sical problems of fluid mechanics and heat transfer, and has wide indus-
trial application. Consequently it has been extensively studied over the
past decades. One of the earliest studies of this problem was reported
by Bachelor [1], who demonstrated that for sufficiently small Rayleigh
numbers, the mode of heat transfer is primarily dominated by conduc-
tion.Subsequent investigations (e.g. [2,3]) havefocused onsteady natural
convection flows in the differentially heated cavity.

However, natural convection in industrial systems is usually un-
steady. Accordingly, the transition of the natural convection flow in
the cavity following sudden heating has been given considerable
attention over the last two decades. Based on a scaling analysis, Patt-
erson and Imberger [4] pointed out that the base flow during the
transition mainly involves a vertical boundary layer flow, a horizon-
tal intrusion and the flow in the core. In the case of low Rayleigh
numbers (smaller than a critical value), the transition is character-
ized by the following processes: (a) the transition of the vertical
boundary layer from unsteady one-dimensional to steady two-
dimensional, which is marked by an overshoot of the temperature
signal and subsequent travelling waves induced by the leading edge
effect (LEE) [5–7]; (b) the formation of horizontal intrusions due to
the presence of the horizontal walls; (c) the arrival of the horizontal
intrusion from the opposite sidewall which triggers the second
ll rights reserved.
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group of travelling waves in the vertical boundary layer [8,9]; and
(d) the approach to a steady state and the stratification of the core
flow [8,10]. In the case with Rayleigh numbers larger than the critical
value, it has been reported that the natural convection flow in the
cavity approaches a periodic flow [11–13]. If the Rayleigh number
is sufficiently large, the natural convection flow in the cavity even
becomes fully turbulent, as reported in [14,15].

The flow in different flow regimes determines heat transfer
through the cavity, and thus it is possible to either enhance or de-
press heat transfer by manipulating the transition of the flow. One
of the simplest techniques for enhancing or depressing heat transfer
through a differentially heated cavity is to place a horizontal fin on
the heated or cooled sidewall, which has been extensively reported
in the literature. In most of the previous studies [16–18], the thick-
ness of the fin is considered to be negligible or small in comparison
with the fin length (the so-called thin fin), and the effect of the fin
length on the natural convection flow in the cavity is considered.
If the length of a fin is sufficiently large, secondary circulations arise
at both the upper and lower corners of the fin [19]. It is reported that
the heat transfer through the finned sidewall is reduced as the fin
length increases due to the depression of the natural convection
flow adjacent to the finned sidewall [19–21]. However, Ooshuizen
and Paul [22] revealed that the secondary circulations resulting
from the presence of a large thin fin on one wall of the cavity en-
hance convective flows adjacent to the opposite sidewall and thus
enhance the heat transfer through the opposite sidewall.

It is noted that steady laminar natural convection flows at low
Rayleigh numbers induced by a fin are the focus of the early studies
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Nomenclature

A Aspect ratio, H/L
g Acceleration due to gravity (m/s2)
H,L Height and length of the cavity (m)
k Thermal conductivity (W/m/K)
Nufin Spatially averaged Nusselt number of the hot sidewall

with a fin
Nunofin Spatially averaged Nusselt number of the hot sidewall

without a fin
p Pressure (N/m2)
Pr Prandtl number, m/j
Ra Rayleigh number, gbDTH3/mj
Raloc Local Rayleigh number, gb(Tmax � Tmin)Dy3/mj
t Time (s)
Dt Time-step (s)
T Temperature (K)

T0 Initial temperature (K)
Tc,Th Temperatures of the cold and hot sidewalls (K)
Tmax,Tmin Maximum and minimum temperatures of the fluid layer

above the fin (K)
DT Initial temperature difference between the working

fluid and sidewall (K)
u, v Velocity components in the x and y directions (m/s)
x, y Horizontal and vertical coordinates (m)
Dy Thickness of the unstable fluid layer (with an adverse

temperature gradient) above the fin
b Coefficient of thermal expansion (1/K)
e Enhancement factor of heat transfer
j Thermal diffusivity (m2/s)
m Kinematic viscosity (m2/s)
q Density (kg/m3)
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[18]. Since the Rayleigh number plays an important role in the
natural convection flow in the cavity [3,11,14], it is of fundamen-
tal and practical significance to examine the effect of the fin on
the flow and heat transfer over an extended range of Rayleigh
numbers. In particular, it is necessary to investigate the transition
of the natural convection flow to steady state induced by a fin at
high Rayleigh numbers. Accordingly, a shadowgraph observation
of the transient natural convection flow in a suddenly differen-
tially heated cavity with a small square fin on the heated side-
wall was recently performed by Xu et al. [23], who classified
the transition of the flow resulting from sudden heating into
three distinct stages: an early stage, a transitional stage and a
quasi-steady stage. It is found that, in the early stage, the fin
blocks the upstream vertical boundary layer flow and forces it
to detach from the finned sidewall, and thus a lower intrusion
front is formed. The lower intrusion front almost immediately
reattaches to the downstream sidewall after it bypasses the fin.
A double-layer structure of the vertical boundary layer, similar
to that observed without a fin [24], is ultimately formed in the
transition to the quasi-steady state. The observed flow features
are also consistent with those reported in [25], in which no clear
separation around the small square fin in the laminar flow re-
gime is observed.

As indicated in the previous studies [18], the fin length is an
important parameter affecting the natural convection flow in the
cavity, and thus a further experiment has been performed by the
present authors [26] in order to investigate the effect of the fin
length on the transient natural convection flow in the cavity. It is
found that the transition of the natural convection flow induced
by a large thin fin exhibits features distinct from that induced by
a small square fin, and flow separation and oscillations of the ther-
mal flow above the thin fin have been observed. Furthermore,
oscillations in turn trigger travelling waves in the downstream
boundary layer and the potential for transition to a turbulent
downstream flow. However, since the experimental observations
provide only qualitative information on the transient flow, it is
necessary to perform a further quantitative investigation in order
to obtain insights into the correlation between the fin and the flow
separation and oscillations around the fin. This motivates the pres-
ent numerical simulation.

In this paper, the experimental set-up reported in [26] is
numerically simulated by a two-dimensional cavity. The numerical
procedures are described in Section 2; numerical results are com-
pared with the experimental data in Section 3; the oscillations of
the thermal flow around the fin are examined in detail in Section
4; and the enhancement of heat transfer is calculated in Section
5. Finally, the conclusions are presented in Section 6.
2. Numerical procedures

The experiment by Xu et al. [26], whose experimental model is
sketched in Fig. 1(a), is considered. The walls of the cavity are made
of 19.5-mm thick acrylic sheet (PerspexTM) except for the two
1-mm thick copper sidewalls adjacent to the water baths. A
2-mm thick acrylic fin of length 40 mm is attached horizontally
at the mid-height of the heated sidewall, as seen in Fig. 1(a). Since
the thermal conductivity of acrylic sheet is only about
0.2 Wm�1 K�1, much less than that of copper (385 Wm�1 K�1)
[26], the heat transfer through the acrylic walls and fin is negligibly
small in comparison with that through the copper sidewalls.
Accordingly, the acrylic walls and fin are considered adiabatic
and the two copper sidewalls are regarded as isothermal in the
present numerical simulation.

Previous studies [8,11] show that two-dimensional simulations
are able to characterize well the flow features of the transient nat-
ural convection in the cavity. Furthermore, since the shadowgraph
procedure used in [26] presents images which are essentially
transverse integrals of the flow, it is able to describe only the
two-dimensional structure of the flow. Accordingly, a two-dimen-
sional numerical simulation is performed in this paper by solving
the two-dimensional governing equations with the Boussinesq
approximation:
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In the experiment described by Xu et al. [26] the working fluid
(water) is initially motionless and isothermal with a temperature
T0 = 295.55 K, which is thus adopted as the initial condition in
the present numerical simulation. Once the experiment starts (at
t = 0), the temperature of the sidewall with the fin is suddenly
raised by DT by the water in the hot water bath and the tempera-
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Fig. 1. (a) Schematic of the experimental model in Xu et al. [26]. (b) Computational domain and boundary conditions.
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ture of the other sidewall is reduced by the same amount by the
water in the cold water bath. Bachelor [1] pointed out that the sub-
sequent development of natural convection in the cavity is deter-
mined by three governing parameters: the Rayleigh number (Ra),
the Prandtl number (Pr) and the aspect ratio (A). They are defined
as follows,

Ra ¼ gbðTh � TcÞH3

mj
; Pr ¼ m

j
; A ¼ H

L
: ð5Þ

It is worth noting that since a thermal boundary layer is
formed on the water bath side of the sidewall even though the
hot water bath is vigorously stirred, the temperature of the
heated sidewall may be lower than the average water tempera-
ture in the hot water bath. Similarly, the temperature of the
cooled sidewall may be higher than the average water tempera-
ture in the cold water bath. As a result, the actual temperature
difference between the two copper sidewalls is smaller than that
between the average temperatures of the two water baths. The
effect is that the actual Rayleigh number achieved in the experi-
ment [26] is smaller, by a factor of approximately 2, than that cal-
culated if the sidewall temperatures are assumed to be equal to
the average temperatures of the associated water baths, as is
effectively the case for the numerical simulations. This was not
commented explicitly on in [26] as there were no numerical re-
sults reported. The possibility of a reduction in the effective Ray-
leigh number was also raised in [7,8]. Thus in simulating a given
experiment, the Rayleigh number used could be approximately
half of that calculated from the difference between the water
bath temperatures in the experiment.

Based on the above discussion of the experimental cavity, the
top and bottom of the two-dimensional computational domain
and the fin are assumed adiabatic and the two side boundaries
are regarded as isothermal. All the interior boundaries of the
two-dimensional computational domain including the surfaces of
the fin are considered to be no-slip. The computational domain
and boundary conditions are illustrated in Fig. 1(b). The coordinate
origin is at the center of the cavity and SI units are adopted in this
paper unless otherwise specified.

The governing equations are implicitly solved using a finite-vol-
ume SIMPLE algorithm [27]. All second derivatives and linear first
derivatives are approximated by a second-order center-differenc-
ing scheme. The advection terms are discretized by a QUICK
scheme [8]. The time integration is by a second-order backward
differencing scheme. The discretized equations are iterated with
under-relaxation factors.

A hybrid grid system with finer non-uniform grids concentrated
in the proximity of all wall boundaries and relatively coarse uni-
form grid in the interior region is constructed. In the wall boundary
regions, the grid expands at a constant rate from the wall toward
the interior edges of these regions. Similarly, the vicinity of the
fin is finely meshed in order to accurately capture the features of
the thermal flow around the fin.

Grid dependence tests have been conducted on two grid sys-
tems (211 � 538 and 259 � 743). In order to evaluate the effect
of the two grid systems on the natural convection flow in the cav-
ity, two representative quantities are evaluated numerically: the
volumetric flow rate (Q) and Nusselt number (Nu) across the verti-
cal centerline of the cavity, which are defined as (also see [28,29])
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Fig. 2(a) compares the time series of the flow rates calculated
using the two grid systems for Ra = 1.84 � 109 and Pr = 6.63.
Clearly, the numerical solutions obtained with both of the grid sys-
tems reveal the same features of the flow development, including
an early spike induced by the horizontal intrusion flow, with small
variations in the presence of flow oscillations. Similar observations
can be made from the Nusselt number time series shown in
Fig. 2(b). It is also clear that for t > 5000 s, the curves of the calcu-
lated quantities using the two different grid systems overlap each
other. These suggest that either of the two grid systems may be
used in the present numerical simulation since the goal behind
the present numerical simulations is to obtain insights into the
flow regime dominated by the fin. In consideration of the comput-
ing time, the grid system of 211 (H) � 536 (L) with a grid inflation
factor of 1.04 in the wall boundary regions is adopted.

Time-step-dependence tests have also been conducted with
time-steps of 0.1 s and 0.05 s, respectively (which are smaller than
the time-step of 0.7 s adopted in [8] for a comparable Rayleigh
number). The test results are also shown in Fig. 2. As seen in
Fig. 2(a) and (b), although the variations of the calculated
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quantities between the two sets of numerical results with different
time-steps are discernible in the presence of flow oscillations, they
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Fig. 3. Early development of the thermal flow around the fin. (a), (c) and (e)
are considerably small (<1%). Therefore, the time-step of 0.1 s is
considered to be sufficiently small to capture the major flow fea-
tures, and is adopted in the present study.

3. Numerical results and comparisons with the experiments

3.1. Comparisons between the calculated and experimentally
visualized flow structures

An important feature of the early transient thermal flow in the
cavity is the formation and evolution of intrusion fronts under the
fin and under the ceiling. Fig. 3 presents the numerically calculated
isotherms for Ra = 1.84 � 109 calculated in terms of the tempera-
ture difference between the two sidewalls (Th�Tc = 8 K) and the
corresponding shadowgraph images for Ra = 3.67 � 109 calculated
in terms of the temperature difference (16 K) between the two
water baths [26]. Clearly, there is good agreement between the
experiment and simulation, supporting the discussion in Section
2 regarding the Rayleigh number values actually achieved in the
experiment. For the purpose of comparing the calculated flow with
the experimentally visualized flow at the same time, the numerical
results at Ra = 1.84 � 109 are presented in the following figures.

Fig. 3(a) and (b) show that two intrusion fronts are formed: one
underneath the ceiling and the other underneath the thin fin. The
upper and lower sections of the boundary layer are almost identi-
cal. After the lower intrusion front bypasses the thin fin, this sim-
ilarity disappears and a starting plume is formed, as shown in
Fig. 3(c) and (d). The numerical and experimental flows agree well
in terms of the plume behavior at this time. Fig. 3(e) and (f) show
that, in the subsequent flow development, the front of the starting
plume ascends until it strikes the intrusion under the ceiling. Dis-
tinct variations of the plume structures between the numerical and
experimental results are clear when the plume front is approach-
ing the intrusion under the ceiling. The experimental plume head
destabilizes and breaks up, but the numerical predicted plume
remains stable. This discrepancy could be attributed to the presence
of stronger perturbations in the experiment. However, a full investi-
gation of this destabilization is beyond the scope of this paper.

The time dependence of the positions of the calculated and
experimentally visualized intrusion and starting plume fronts is
plotted in Fig. 4. Here, the position of the calculated front corre-
d)

30 s

(f)

t = 41 s

Shadowgraphs. (b), (d) and (f) Isotherms (contours of 295.56 and 296 K).
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sponds to the front end of the isotherm of 295.56 K (see Fig. 3b,
d and f), and the position of the experimentally visualized front
(b)

t =320 s

(d)

t =700 s

Fig. 5. Transition of the thermal flow around the fin to a periodic flow. (a), (c) and (e) S
interval of 0.2 K). (g) Streamlines (contours from 2.4 � 10�6 to 3.6 � 10�5 m2/s with an
is determined by the bright strip in front of the thermal flow head
(see Fig. 3a, c and e). Clearly, before the front bypasses the fin to
form an ascending plume, the position of the calculated intrusion
front agrees very well with that of the experimentally visualized
intrusion front (Fig. 4a). Xu et al. [26] showed that the motion of
the experimental lower intrusion front is characterized by the
velocity scale of Pr1/3 Ra2/3(tj/H2)3/2. Due to the good agreement
between the experimental and calculated lower intrusion fronts,
the velocity scale given by Xu et al. [26] is also consistent with
the present calculated results. Indeed, this good agreement be-
tween the experiment and simulation remains for the early stage
of the starting plume (t < 30 s in Fig. 4b). However, as the plume
head destabilises in the experiment, the plume front ascends more
quickly than that predicted by the numerical simulation. This is
evidenced by the deviation of the two plots for t > 30 s in Fig. 4(b).

After the plume front strikes the intrusion under the ceiling, it is
entrained into the intrusion and convected away. Although the
reattachment of the plume front to the vertical boundary layer
does not occur, the thermal flow behind the plume front is ulti-
mately drawn to the downstream boundary layer due to entrain-
ment by the vertical boundary layer. With the passage of time,
the cold intrusion from the opposite sidewall strikes the finned
sidewall. Fig. 5(a) and (b) present the flow structures when the
cold intrusion front (marked by the dark solid line near the lower
corner in the shadowgraph image) is approaching the hot sidewall.
Note that the shadowgraph image here has been processed by sub-
tracting an image recorded immediately before the experiment
starts from the actual shadowgraph image (see [24] for details).
Clearly, the development of the calculated flow is slightly quicker
than that of the experimental one although the basic flow struc-
tures are similar between the two sets of results. Both the experi-
mental and numerical results indicate that the thermal flow
around the fin has been drawn closer to the fin at this time.

A double-layer structure of the boundary layer starts to form in
the subsequent development of the flow after the cold intrusion
strikes the finned sidewall (also see [10,24]). Fig. 5(c) shows that
a bright outer strip arises outside the thermal boundary layer in
the lower cavity. Corresponding to the bright outer strip, an
upward thermal tongue of isotherms is present near the bottom
corner (refer to Fig. 5d). As described in [10], the outer bright strip
in the shadowgraph images corresponds to the positions of the
(f)

t=11786 s

Separation

(g)

t=11786 s

hadowgraph. (b), (d) and (f) Isotherms (contours from 291.73 to 299.53 K with an
interval of 2.4 � 10�6 m2/s).
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minima of the second derivative of the temperature. Furthermore,
it is seen in Fig. 5(d) that, due to the strong perturbations from the
entrainment of the thermal flow to the sidewall, the flow structure
near the top corner still displays turbulent features.

As time increases further, the stratification of the interior fluid
increases, and the lower outer bright strip ultimately reaches the
fin. The double-layer structure in the lower cavity becomes more
distinct, as seen in Fig. 5(e). Fig. 5(f) shows that an upward thermal
tongue of isotherms also arises near the top corner, which corre-
sponds to a bright strip in Fig. 5(e). However, the bright strip in
the upper cavity remains broken for a long time (more than 3 h
in the experiment in [26]). The streamlines in Fig. 5(g) indicate that
a circulation above and close to the fin is responsible for the break-
up of the bright strip observed in the shadowgraph image. Further-
more, the separation of the thermal flow above the fin is clear, as
seen in Fig. 5(e) and (f).

3.2. Comparisons between the calculated and measured temperatures

For the purpose of illustrating the overall transition of the
boundary layer adjacent to the finned sidewall to a time-depen-
dent periodic flow, Fig. 6(a) presents a time series of the calculated
temperature at the point (0.498 m, 0.09 m) in the boundary layer
downstream of the fin, which is compared with the temperature
series in Fig. 6(b) obtained at the same location without a fin. A log-
arithmic time scale is adopted in Fig. 6 in order to clearly show the
early flow behaviors. The early transient flows with the presence of
the fin include the LEE (marked by an overshoot and subsequent
travelling waves, also see [7]), perturbations from the ascending
plume, and reattachment of the thermal flow behind the plume
front. It has been shown in Fig. 3 that the plume front is not
entrained into the downstream vertical boundary layer after it by-
passes the thin fin, and thus a complete LEE is observed at the
downstream side of the fin at the early stage. As the plume front
ascends and the thermal flow behind the plume front is attached
to the downstream boundary layer, these flow behaviors may trig-
ger large perturbations in the downstream boundary layer. Subse-
quently, through a slow transitional stage, the boundary layer flow
approaches a time-dependent periodic flow, as seen in Fig. 6(a). It
is clear that, compared with the transition to a steady state in the
case without a fin in Fig. 6(b) (also see e.g. [8,30]), the fin changes
the flow regimes adjacent to the sidewall and results in the transi-
tion to a time-dependent periodic flow. The mechanisms, responsi-
ble for the transition, will be discussed in Section 4.
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Fig. 7(a) and (b) present the calculated and measured tempera-
tures [26] at different positions in the boundary layer downstream
of the fin during the early stage of the flow development. Qualita-
tive agreement between the calculated and measured temperature
time series in terms of the major flow features including the LEE
effect, traveling waves and perturbations of the plume front is
clear. However, the discrepancies between the experimental and
numerical results are also discernible, particularly in the very early
stage of the flow development. This is because an ideally isother-
mal and motionless condition at the initial state cannot be
achieved in the experiment.
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In order to further compare the calculated temperature with the
measured temperature during the transition to a periodic flow,
Fig. 7(c) and (d) plot the time series of the calculated and measured
temperatures at two different points in the downstream boundary
layer over a period of 200 s from t = 3500 to 3700 s. The calculated
temperatures show features consistent with the experimental
measurements. However, the amplitude of the oscillations of the
calculated temperature is apparently larger (up to 32%) than that
of the oscillations of the measured temperature. This could be
attributed to the errors associated with the positioning of the ther-
mositors; the temperature gradient near the sidewall is very high
and small variations in the location of a thermistor can result in
very large differences in the measured temperature [7].

Fig. 8 presents the power spectrum of the calculated tempera-
ture in the transition to a periodic flow. The dominant frequency
is found to be f = 0.0832 Hz, consistent with that of the experimen-
tal measurement (0.095 Hz, see [26]). It is clear in Fig. 8 that har-
monic frequency modes such as 2f, 3f and higher are present.
The frequency mode of 2f is in fact clearly visible in Fig. 7(d), indi-
cated by the double peaks (one higher and the other one lower) of
the temperature signals.

4. Oscillations of the thermal flow around the fin

As shown in Fig. 5(e) and (f), travelling waves in the boundary
layer downstream of the fin are triggered by the oscillations
of the thermal flow around the fin. For the purpose of examining
the mechanism responsible for the oscillations, Fig. 9 presents
the temperature profile of the fluid layer above the fin at
x = 0.48 m. Clearly, for y < 0.01 m, the temperature increases
toward the fin surface. This temperature configuration is poten-
tially unstable, and the stability of the fluid layer is governed by
a local Rayleigh number (Raloc = gb(Tmax � Tmin)Dy3/mj). In the
present case, the local Rayleigh number is estimated to be
2.2 � 104, which is much larger than the critical value of O(103)
for Rayleigh–Benard instabilities [31]. Accordingly, the thermal
flow above the fin is unstable in a Rayleigh–Benard sense, with
the instabilities appearing as the plume-like intermittent separa-
tions seen in Fig. 5(e), (f) and (g). These separations are then en-
trained by the downstream boundary layer.

In order to illustrate the oscillations of the flow adjacent to the
finned sidewall, Fig. 10 shows the spatial distribution of the calcu-
lated standard deviation of the temperatures. Clearly, the oscilla-
tions of the temperatures are the strongest at the downstream
side of the fin, and intermittent plumes induce the oscillations
along the wall downstream of the fin. This is consistent with the
time series of the temperatures at different positions downstream
of the fin shown in Figs. 6 and 7.

Previous numerical simulations have showed that a bifurcation
(oscillatory flow) of the natural convection flow in a square cavity
filled with air (Pr � 0.7) may be observed if the Rayleigh number is
O(108) or higher (see e.g. [11]). The oscillatory flow in a cavity
without a fin has been demonstrated to be sensitive to the Prandtl
number and aspect ratio [12,32]. For example, the flow in a square
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Fig. 12. Time series of the enhancement factor. (a) With one fin on the heated wall
and no fin on the cooled wall. (b) With one fin on the heated wall and the other
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cavity filled with water (Pr � 7) remains steady even though the
Rayleigh number is much higher than O(108) (see e.g. [30]). As seen
in Fig. 6(b), at the Rayleigh number of 1.84 � 109, the natural con-
vection flow in the water filled shallow cavity without a fin
remains steady. In contrast to that in Fig. 6(b), for the case with
a fin, strong intermittent plumes are generated at the leeward of
the fin, which in turn trigger the oscillations in the downstream
vertical boundary layer (Fig. 10). The amplitude of the temperature
fluctuation at the point (0.498 m, 0.09 m) is up to 11% of the tem-
perature difference between the two sidewalls (refer to Fig. 6a). As
a consequence, the natural convection flow in the cavity with a
thin fin ultimately approaches an oscillatory flow.

5. Enhancement of heat transfer

For the purpose of examining the impact of the oscillations on
heat transfer through the sidewall, Fig. 11 presents a comparison
of the calculated local Nusselt numbers along the hot sidewall with
and without a thin fin at two different times (corresponding to the
early and quasi-steady stages of the flow development, respec-
tively). The profiles of the Nusselt number upstream of the fin
are almost identical for the cases with and without the fin as
expected. This implies that the fin has a negligible effect on the
heat transfer through the upstream section of the sidewall. How-
ever, the profiles of the local Nusselt number near and downstream
of the fin are apparently different from those in the case without a
fin. The net effect is that the average Nusselt number downstream
of the fin is larger than that in the case without a fin. This is partic-
ularly true in the early time (Fig. 11a), suggesting that the oscilla-
tions of the downstream thermal flow enhance heat transfer
through the downstream sidewall.

In order to quantitatively assess the enhancement or depression
of the heat transfer through the finned sidewall, the Nusselt num-
ber along the sidewall is integrated and an enhancement factor is
defined as follows,

e ¼ ðNufin � NunofinÞ=Nunofin: ð8Þ

It is clear from the definition that the enhancement factor (e) de-
notes the percentage of enhancement (if positive) or depression
(if negative) of the heat transfer through the finned sidewall with
reference to the case without the fin.

Fig. 12(a) plots the time series of the enhancement factor calcu-
lated with a single thin fin on the hot sidewall and no fin on the
cold sidewall. e is positive almost all the time with a maximum
value of 23% in the early stage. This suggests that the heat transfer
through the finned sidewall is significantly enhanced in the early
stage, which is supported by the observation in Fig. 11(a). It is also
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Fig. 11. Profiles of the Nusselt number along the hot sidewall with and without a
thin fin at different times.
worth noting that, despite fluctuations, e steadily reduces from 23%
in the early time to 4.6% at 6000 s. This is because more heat input
through the finned hot sidewall compared to the heat output
through the unfinned cold sidewall causes the average tempera-
ture of the fluid in the cavity to increase, resulting in a smaller tem-
perature difference between the finned sidewall and the fluid. The
reduced temperature difference in turn reduces the heat input
through the finned sidewall.

In order to eliminate the effect of the increase of the average
fluid temperature, a further investigation for which an identical
adiabatic fin is attached horizontally at the mid-height of the cold
sidewall has been performed. In this case, the heat input through
the hot sidewall balances the heat output through the cold side-
wall, and the average fluid temperature remains constant.
Fig. 12(b) shows the calculated e as a function of time. It is seen
from this figure that e approaches a steady positive value of
approximately 7%, suggesting that an adiabatic thin fin, through
improving downstream convection flows, is able to enhance heat
transfer through the cavity by approximately 7% for the present
Rayleigh number.

Fig. 13 presents the time series of the calculated flow rate cross
the centerline in the cases with and without a thin fin. It is seen
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Fig. 13. Time series of the flow rate cross the center line (x = 0) in the cases with
and without a fin.
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from this figure that, consistent with the enhancement of the heat
transfer through the finned sidewall, the horizontal convection
flow across the cavity is significantly improved due to the presence
of the fin, with an increase of approximately 41% at t = 6000 s.

6. Conclusions

In this paper, the natural convection flow in a suddenly differ-
entially heated cavity with a thin fin on the hot sidewall is numer-
ically investigated. The present numerical results are shown to be
consistent with the previous flow visualizations and temperature
measurements. The numerical results also demonstrate that the
thin fin is able to change the flow regime in the cavity and cause
the transition to a periodic flow.

In the early stage of the flow development following sudden
heating, a lower intrusion front is formed under the fin, and a start-
ing plume arises after the lower intrusion front bypasses the fin.
The starting plume induces strong perturbations and even turbu-
lence in the downstream vertical boundary layer. Accordingly, heat
transfer through the finned sidewall is significantly enhanced in
the early stage (a maximum increase of up to 23% in the present
study).

In the transition to a periodic flow, separation and intermittent
plumes of the thermal flow above the fin are observed. The inter-
mittent plumes are due to the Rayleigh–Benard-type instability,
and the natural convection flow in the cavity approaches a time-
dependent periodic flow. Furthermore, the intermittent plumes
also trigger oscillations in the downstream boundary layer, which
thus enhance heat transfer through the finned sidewall (a 7% in-
crease of heat transfer rate at the quasi-steady state for the present
Rayleigh number). The horizontal convection flow cross the cavity
is also significantly reinforced, and the flow rate cross the center-
line increases by up to 41% at the quasi-steady stage.

The present investigation indicates that placing an adiabatic
thin fin horizontally on a heat transfer surface provides a simple
and practical way for enhancing heat transfer. Since the focus of
the present paper is on some fundamental aspects of the flow con-
figuration around the fin, no attempt is made to resolve the opti-
mal configuration of fins for the purpose of enhancing heat
transfer.
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